The correct options are
A 1
D −2
Any point on the parabola x2=ay can be written as (x,x2a).
Substituting in the equation of the line
x2a−2x=1
or
x2−2ax−a=0
x=2a±√4a2+4a2
x=a±√a2+a
Hence
y=x2a=2a2+a±2a√a2+aa
=(2a+1)±2√a2+a
Hence the points of intersection are
A=(a+√a2+a,(2a+1)+2√a2+a) and B=((a−√a2+a,(2a+1)−2√a2+a)
Applying distance formula
AB2=4(√a2+a)2+16(√a2+a)2=40
20(a2+a)=40
a2+a=2
a2+a−2=0
(a+2)(a−1)=0
a=−2 and a=1.