x−intercept(AO):xi=−(a+b)a
y−intercept(BO):yi=−(a+b)b
AB2=AO2+BO2
⇒AB2=(a+b)2(1a2+1b2)
Area of Δ(AOB) taking AO as base and BO as height :
A=12×(a+b)2ab
Area of Δ(AOB) taking AB as base and p as height :
A=12×AB×p
Equating both expressions,
(a+b)2ab=AB×p
⇒(a+b)4a2b2=(a+b)2(1a2+1b2)×p2 (squaring both sides)
⇒p2=(a+b)2a2+b2
⇒p2=1+2aba2+b2