If the planes x=cy+bz,y=az+cx and z=bx+ay pass through a line, then a2+b2+c2+2abc+4=
Open in App
Solution
Let l,m,n be the d.c.'s of the line through which the given planes pass. This line will be perpendicular to normals of the given planes −l+cm+bn=0 cl−m+an=0 bl+am−n=0 Eliminating l,m,n, we have ∣∣
∣∣−1cbc−1aba−1∣∣
∣∣=0 −1(1−a2)−c(−c−ba)+b(ac+b)=0 a2+b2+c2+2abc−1=0