The correct option is
A a2+b2+c2+2abc=1Given equation of the planes are
x−cy−bz=0....(i)
xx−y+az=0....(ii)
bx+ay−z=0....(iii)
If a plane passes through a line then it is perpendicular to the normal of the plane,
Let the direction ratio of the line be (l,m,n)
Then,
(l,m,n).(1,−c,−b)=0, (l,m,n).(c,−1,a)=0 and (l,m,n).(b,a,−1)=0
l−mc−nb=0.....(A)
lc−m+na=0....(B)
bl+am−n=0....(C)
Solving (A) and (B) by cross multiplication
l−ac−b=−ma+bc=n−1+c2
⇒l=−ac−b
⇒m=−a−bc
⇒n=c2−1
Substituting the values in (C), we get
b(−ac−b)+a(−a−bc)−c2+1=0
⇒−2abc−a2−b2−c2+1=0
⇒a2+b2+c2+2abc=1