If the point A(2,-4) is equidistant from P(3,8) and Q(-10,y), then find the value of y.
-3
-5
According to the question,
A(2,-4) is equidistant from P(3,8) amd Q(-10,y).
i.e.,PA = QA
⇒=√(2−3)2+(−4−8)2=√(2+10)2+(−4−y)2
[∵ Distance between the points (x1,y1) and (x2,y2),d=√(x2−x1)2+(y2−y1)2]
⇒√(−1)2+(−12)2=√(12)2+(4+y)2
⇒√1+144=√144+16+y2+8y
⇒√145=√160+y2+8y
On squaring both the sides, we get
145=160+y2+8y
⇒y2+8y+160−145=0
⇒y2+8y+15=0
⇒y2+5y+3y+15=0
⇒y(y+5)+3(y+5)=0
⇒(y+5)(y+3)=0
If y+5=0, then y=−5
If y+3=0, then y=−3
∴y=−3 and −5
Hence, the values of y are -3, -5.