If the point (a3(a−1),a2−3(a−1)),(b3(b−1),b2−3(b−1)) and (c3(c−1),c2−3(c−1)) are collinear for three distinct values a,b,c and a≠1,b≠1 and c≠1, then find the value of abc−(ab+bc+ac)+3(a+b+c).
Open in App
Solution
∣∣
∣
∣∣a3(a−1)a2−3(a−1)1b3(b−1)b2−3(b−1)1c3(c−1)c2−3(c−1)1∣∣
∣
∣∣ where a,b,c≠1