If the point P (2, 1) lies on the segment joining Points A (4, 2) and B (8, 4) then
Using the section formula, if a point (x,y) divides the line joining the points (x1,y1) and (x2,y2) in the ratio m:n, then
(x,y)=(mx2+nx1m+n,my2+ny1m+n)
Let P divide AB in the ratio k:1
Substituting (x1,y1)=(4,2) and (x2,y2)=(8,4) in the section formula, we get
P=(k(8)+1(4)k+1,k(4)+1(2)k+1)
But given P=(2,1)
⇒(8k+4k+1,4k+2k+1)=(2,1)
Comparing the x - coordinate,
⇒8k+4k+1=2
⇒8k+4=2k+2
6k=−2
k=−13
As k is negative, P divides AB in the ratio 1:3 externally.
⇒APPB=13