If the point P(x,y) is equidistant from the point A(a+b,b−a) and B(a−b,a+b), then
A
ax=by
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
bx=ay
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
x2−y2=2(ax+by)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
P can be (a,b).
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are Cbx=ay DP can be (a,b). We have PA=PB, i.e., (PA)2=(PB)2 ⇒[x−(a+b)]2+[y−(b−a)]2=[x−(a−b)]2+[y−(a+b)]2 ⇒[(x−a)−b]2+[(y−b)+a]2=[(x−a)+b]2+[(y−b)−a]2 ⇒[(x−a)+b]2−[(x−a)−b]2=−[(y−b)+a]2+[(y−b)−a]2 ⇒4b(x−a)=4a(y−b)⇒bx=ay (1) Therefore, (b) is correct. Also, P(a,b) satisfies the condition (1), so that P can be (a,b) and hence (d) is also correct.