wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the point P(x,y) is equidistant from the points A(a+b,ba) and B(ab,a+b). Prove that bx=ay.

Open in App
Solution

Given points P(x,y)(x2,y2) ,A(a+b,ba)(x1,y1)

Since point p(x,y) is equidistant from A(a+b,ba),B(ab,a+b)

P(x,y)(x2,y2),B(ab,a+b)(x1,y1)

PA=PB

=(x2x1)2+(y2y1)2


[x(a+b)]2+[y(ba)]2=[x(ab)]2+[y(a+b)]2

Squaring both sides

x2+(a+b)22x(a+b)+y2+(ba)22y(ba)=x2+(ab)22x(ab)+y2+(a+b)22y(a+b)
(ab)22x(ab)+(a+b)22y(a+b)=(a+b)22x(a+b)
2x(ab)2y(a+b)=2x(a+b)2y(ba)
2x(a+ba+b)=2y(a+bb+a)
bx=ay [henceproved]

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon