If the point P(x,y) lie on a circle with the center (3,-2) and radius 3 unit, then prove that x2+y2−6x+4y+4=0
Open in App
Solution
Let center of circle C(3,−2) and point P(x,y) lie on a circle. Given: radius of circle CP=3 ⇒√(x−3)2+(y+2)2=3 Squaring both sides ⇒(x−3)2+(y+2)2=9 ⇒x2+9−6x+y2+4+4y=9 ⇒x2+y2−6x+4y+4=0