Given the line is 3x+4y+5=0 __ (1)
Now
x2+y2
=x2+(−5−3x4)2 [using (1)]
=x2+(−5−3x)216=f(x) [Let]
Now differentiating both sides w.r.t
'x' we get
f(x)=2x+18{(5+3x)}.3
or, f′′(x)=(2+38); __ (2)
Now, for maxm or minimum value
of f(x) we must have,
f′(x)=0
or, 2x+9x8=−15/8
or, 25x8=−15/8
or, x = -3/5
putting x = -3/5 in (1) we get,
y = -4/5 ;
for this values of x & y we have,
f′′(x)>0 so, for, These values of
x and y we have minimum
value of f(x).
so minimum value of f(x) is
32/25+42/25=2525=1.