If the points (0,0), (3,√3) ,(p,q) from an equilateral triangle and q1,q2 are the two values of q then q1+q2 =
Consider the given point
A(x1,y1)=(0,0)
B(x2,y2)=(3,√3)
C(x3,y3)=(p,q)
Then,
We know that it is an equilateral triangle,
AB=BC
⇒√(x1−x2)2+(y1−y2)2=√(x2−x3)2+(y2−y3)2
⇒√(0−3)2+(0−√3)2=√(3−p)2+(√3−q)2
⇒√12=√9+p2−6p+3+q2−2√3q
Squaring both side and we get,
⇒12=p2+q2−6p−2√3q+12
⇒p2+q2−6p−2√3q=0 ....... (1)
Again,
AB=CA
⇒√(x1−x2)2+(y1−y2)2=√(x3−x1)2+(y3−y1)2
⇒√(0−3)2+(0−√3)2=√(p−0)2+(q−0)2
⇒√12=√p2+q2
squaring both side and we get,
p2+q2=12…… (2)
By equation (1) and (2) to, and we get,
12−6p−2√3q=0
⇒6p+2√3q=12
⇒3p+√3q=6
⇒3p=6−√3q
⇒p=6−√3q3
Put the value of p in equation (2) and we get,
p2+q2=12
⇒(6−√3q3)2+q2=12
⇒36+3q2−12√3q+9q2=108
⇒12q2−12√3q=72
$\begin{align}
⇒12(q2−√3q−6)=0
⇒q2−√3q−6=0
⇒q2−2√3q+√3q−6=0
⇒q(q−2√3)+√3(q−2√3)=0
⇒(q−2√3)(q+√3)=0
Then, q=2√3,q=−√3
Now, According to given question,
q=q1+q2
q=2√3−√3
q=√3
Hence, this is the
answer.