The correct options are
A (8,7) B (4,5) C (12,3) D All of the above
Given-
In ΔABC, the mid point of BC is D(8,4),
The mid point of AC is E(10,5), and the mid point of AB is F(6,6).
To find out -
The coordinates of A,B & C.
Solution-
Let the vertices of ΔABC be A(x1,y1),B(x2,y2) & C(x3,y3).
Then, by applying mid point formula,
x2+x32=8
⟹x2+x3=16 and
y2+y32=4
⟹y2+y3=8 ........(i)
x1+x32=10
⟹x1+x3=20 and
y1+y32=5
⟹y1+y3=10 ........(ii),
x1+x22=6
⟹x1+x2=12 and
y1+y22=6
⟹y1+y2=12 ........(iii).
Adding (i), (ii) & (iii),
2(x1+x2+x3)=48 and
2(y1+y2+y3)=30
⟹x1+x2+x3=24 and
y1+y2+y3=15 ...........(iv).
Subtracting (i) from (iv)
x2=24−20=4 and y2=15−10=5,
Subtracting (ii) from (iv)
x1=24−16=8 and y1=15−8=7,
Subtracting (iii) from (iv)
x3=24−12=12 and y2=15−12=3.
∴ The coordinates of the vertices are A(8,7),B(4,5) & C(12,3)