wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the points (a cosα, a sinα) and (a cosβ, a sinβ) are at a distance k sinα-β2 apart, then k = __________.

Open in App
Solution

Given (a cos α, a sin α) and (a cos β, a sin β) are at a distance k sinα-β2 a part
Using distance formula,

(a cosβ- a cosα)2+(a sinβ-a sinα)2 =a2cosβ-cosα2+a2sinβ-sinα2=acos2β+cos2α-2 cosα cosβ+sin2α+sin2β-2 sinα sinβ=a1+1-2 cosα cosβ-2 sinα sinβ=a21-cosα cosβ-sinα sinβ=2a 1-cosα-β=2 a2 sin2α-β2= 2a sinα-β2i.e K=2a

flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Some Functions and Their Graphs
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon