Given that the points A(−1,−2,1),B(−2,p,q) and C(1,−2,−1) are collinear.Let the point B divide the line segment AC in the ratio k:1, then by section formula the coordinates of the point B are
(k−1k+1,−2k−2k+1,−k+1k+1)
But the coordinates of the point B are (−2,p,q), so we have,
k−1k+1=−2,−2k−2k+1=p,−k+1k+1=q
⇒k−1=−2k−2,−2(k+1)k+1=p,−k+1k+1=q
⇒k+2k=−2+1,p=−2,−k+1k+1=q
⇒3k=−1,p=−2,−k+1k+1=q
⇒k=−13,p=−2,q=−k+1k+1
⇒k=−13,p=−2,q=−−13+1−13+1
⇒k=−13,p=−2,q=1+33−1+33
⇒k=−13,p=−2,q=4323
⇒k=−13,p=−2,q=42
∴k=−13,p=−2,q=2