Given that the points A(1,0,−2),B(2,p,q) and C(−1,5,2) are collinear.Let the point B divide the line segment AC in the ratio k:1, then by section formula the coordinates of the point B are
(−k+1k+1,5k+0k+1,2k−2k+1)
But the coordinates of the point B are (2,p,q), so we have,
−k+1k+1=2,5kk+1=p,2k−2k+1=q
⇒−k+1=2k+2,5kk+1=p,2k−2k+1=q
⇒−k−2k=2−1,5kk+1=p,2k−2k+1=q
⇒−3k=1,5kk+1=p,2k−2k+1=q
⇒k=−13,5kk+1=p,2k−2k+1=q
⇒k=−13,−53−1+33=p,−23−2−1+33=q
⇒k=−13,−5323=p,−2−6323=q
⇒k=−13,p=−5323,q=−8323
⇒k=−13,p=−52,q=−8323
⇒k=−13,p=−52,q=−82
∴k=−13,p=−52,q=−4