Given that the points A(4,2,2),B(4,p,q) and C(2,3,3) are collinear.Let the point B divide the line segment AC in the ratio k:1, then by section formula the coordinates of the point B are
(2k+4k+1,3k+2k+1,3k+2k+1)
But the coordinates of the point B are (4,p,q), so we have,
2k+4k+1=4,3k+2k+1=p,3k+2k+1=q
⇒2k+4=4k+4,3k+2k+1=p,3k+2k+1=q
⇒2k−4k=4−4,3k+2k+1=p,3k+2k+1=q
⇒−2k=0,3k+2k+1=p,3k+2k+1=q
⇒k=0,3×0+20+1=p,3×0+20+1=q
∴k=0,p=2,q=2