If the points A(x, 2), B (-3,-4) and C (7, -5) are collinear, then the value of x is:
-63
It is given that the three points A(x, 2), B (-3,-4) and C (7, -5) are collinear.
∴Area of ΔABC=0
⇒12[x1(y2−y3)+x2(y3−y1)+x3(y1−y2)]=0
Here, x1=x,y1=2,x2=−3,y2=−4 and x3=7,y3=−5
⇒x[−4−(−5)]−3(−5−2)+7[2−(−4)]=0⇒x(−4+5)−3(−5−2)+7(2+4)=0⇒x−3×(−7)+7×6=0⇒x+21+42=0⇒x+63=0⇒x=−63
Thus, the value of x is -63.
Hence, the correct option is A.