Points A(k,2-2k), B (1-k, 2k) and C(-k-4, 6-2k) are collinear.
Then, slope of line AB = slope of line BC
2k−(2−2k)1−k−k=6−2k−2k−k−4−1+k
[0.5Marks]
4k−21−2k=6−4k−5
120k+10=6−4k−12k+8k2
8k2+4k−4=0
2k2+k−1=0
[0.5Marks]
2k2(k+1)−1(k+1)=0
(2k−1)(k+1)=0
2k-1=0 and k+1=0
k=12 and k=−1
we can also say, slope of AB = slope of AC 2k−(2−2k)1−k−k=6−2k−(2−2k)−k−4−k
4k−21−2k=4−2k−4
−8k2+4k−16k+8=4−8k
8k2+4k−4=0
2k2+k−1=0
we got the same equation of previous case
So k=12 and k=-1 are the only possible values of k when the given points are collinear.