Given: Points A(k,2-2k), B (1-k, 2k) and C(-k-4, 6-2k) are collinear.
Then, slope of line AB = slope of line BC [0.5 Mark]
⇒2k−(2−2k)1−k−k=6−2k−2k−k−4−1+k
⇒4k−21−2k=6−4k−5
⇒120k+10=6−4k−12k+8k2
⇒8k2+4k−4=0
⇒2k2+k−1=0
⇒2k2(k+1)−1(k+1)=0
⇒(2k−1)(k+1)=0
⇒2k−1=0andk+1=0
⇒k=12 and k=−1 [1 Mark]
We can also say, slope of AB = slope of AC [0.5 Mark]
⇒2k−(2−2k)1−k−k=6−2k−(2−2k)−k−4−k
⇒4k−21−2k=4−2k−4
⇒−8k2+4k−16k+8=4−8k
⇒8k2+4k−4=0
⇒2k2+k−1=0
we got the same equation of previous case
So,
k=12 and k=−1 are the only possible values of k
when given points lie on a line. [1 Mark]