wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the points (a3a1,a23a1),(b3b1,b23b1),(c3c1,c23c1) are collinear for three distinct values of a,b,c, then show that abc(bc+ca+ab)+3(a+b+c)=0.

Open in App
Solution

It is given that three points (a3a1,a33a1),(b3b1,b33b1),(c3c1,c33c1) are collinear.
a,b,c are distinct and a1,b1,c1
(x1y1),(x2y2) & (x3y3) are collinear if
Δ=12∣ ∣ ∣x1y11x2y21x3y31∣ ∣ ∣=0
Using this property,
12∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣a3a21(a33)(a1)1b3b21(b23)(b1)1c3c21(c23)(c1)1∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣=0(a1)(b1)(c1)∣ ∣ ∣a3a23a1b3b23b1c3c23c1∣ ∣ ∣=0
∣ ∣ ∣a3a23a1b3b23b1c3c23c1∣ ∣ ∣=0(abc1,(a1)(b1)(c1)0)R1R1R2,R2R2R3∣ ∣ ∣a3b3a2b2abb3c3b2c2bcc3c331∣ ∣ ∣=0(ab)(bc)∣ ∣ ∣a2+b2+aba+b1b2+c2+bcb+c1c3c231∣ ∣ ∣=0R1R1R2
∣ ∣ ∣a2c2+b(ac)ac0b2+c2+bcb+c1c3c23c1∣ ∣ ∣=0((ab)=(bc)0,a,b,c are distinct )
(ac)∣ ∣ ∣a+c+b10b2+c2+bcb+c1c3c23c1∣ ∣ ∣=0∣ ∣ ∣a+c+b10b2+c2+bcb+c1c3c23c1∣ ∣ ∣=0
Expanding along the IIIrd column we have,
(c1){(a+b)(b+c)b2}{(a+b)(c23)3c}=0(c1)(ab+b2+ac+bcb2)(ac23a+bc23b3c)=0(c1)(ab+bc+ca)[(a+b)c23(a+b+c)]=0abc+bc2+ac2abbccaac2bc2+3(a+b+c)=0abc(ab+bc+ca)+3(a+b+c)=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Hyperbola and Terminologies
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon