It is given that three points
(a3a−1,a3−3a−1),(b3b−1,b3−3b−1),(c3c−1,c3−3c−1) are collinear.
a,b,c are distinct and a≠1,b≠1,c≠1
(x1y1),(x2y2) & (x3y3) are collinear if
Δ=12∣∣
∣
∣∣x1y11x2y21x3y31∣∣
∣
∣∣=0
Using this property,
12∣∣
∣
∣
∣
∣
∣
∣
∣∣a3a2−1(a3−3)(a−1)1b3b2−1(b2−3)(b−1)1c3c2−1(c2−3)(c−1)1∣∣
∣
∣
∣
∣
∣
∣
∣∣=0⇒(a−1)(b−1)(c−1)∣∣
∣
∣∣a3a2−3a−1b3b2−3b−1c3c2−3c−1∣∣
∣
∣∣=0
⇒∣∣
∣
∣∣a3a2−3a−1b3b2−3b−1c3c2−3c−1∣∣
∣
∣∣=0(∵a≠b≠c≠1,(a−1)≠(b−1)≠(c−1)≠0)R1↔R1−R2,R2↔R2−R3⇒∣∣
∣
∣∣a3−b3a2−b2a−bb3−c3b2−c2b−cc3c3−31∣∣
∣
∣∣=0⇒(a−b)(b−c)∣∣
∣
∣∣a2+b2+aba+b1b2+c2+bcb+c1c3c2−31∣∣
∣
∣∣=0R1←R1−R2
⇒∣∣
∣
∣∣a2−c2+b(a−c)a−c0b2+c2+bcb+c1c3c2−3c−1∣∣
∣
∣∣=0((a−b)=(b−c)≠0,a,b,c are distinct )
⇒(a−c)∣∣
∣
∣∣a+c+b10b2+c2+bcb+c1c3c2−3c−1∣∣
∣
∣∣=0⇒∣∣
∣
∣∣a+c+b10b2+c2+bcb+c1c3c2−3c−1∣∣
∣
∣∣=0
Expanding along the IIIrd column we have,
⇒(c−1){(a+b)(b+c)−b2}−{(a+b)(c2−3)−3c}=0⇒(c−1)(ab+b2+ac+bc−b2)−(ac2−3a+bc2−3b−3c)=0⇒(c−1)(ab+bc+ca)−[(a+b)c2−3(a+b+c)]=0⇒abc+bc2+ac2−ab−bc−ca−ac2−bc2+3(a+b+c)=0⇒abc−(ab+bc+ca)+3(a+b+c)=0