The correct option is D (−1,3)
f′(x)=3(x2−2ax+a2−1)
Clearly roots of f(x)=0 must be distinct and lie in the interveal (−2,4).
∴D>0⇒a∈R........(1)
f′(−2)>0⇒a2+4a+3>0
⇒a<−3ora>−1.......(2)
f′(4)>0⇒a2−8a+15>0
⇒a>5ora<3........(3)
and −2<−B2A<4⇒−2<a<4........(4)
From (1),(2),(3)&(4),a∈(−1,3)