The correct option is C 1
ax3+bx−c is divisible by x2+bx+c⇒ remainder = 0
i.e. f(x)=g(x)q(x)+r(x)
where, r(x)=0
ax−abx2+bx+c)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ax3+bx−c −ax3±abx2±acx–––––––––––––––––––– −abx2+(b−ac)x−c∓abx2∓ab2x∓abc–––––––––––––––––––––––– ab2x+(b−ac)x+abc−c
So, r(x)=(ab2+b−ac)x+(abc−c)=0
The (ab2+b−ac)x+(abc−c) will be zero,
If ab2+b−ac=0 and abc−c=0
ab2+b−ac=0 is a quadratic polynomial, lets take other equation.
c(ab−1)=0
⇒c=0; ab−1=0∴ab=1