If the polynomial x4+2x3+8x2+12x+18 is divided by another polynomial x2+5, the remainder comes out to be px+q. Find the value of pandq
Solution:
Step1: Divide f(x)bys(x):
Given:
Letf(x)=x4+2x3+8x2+12x+18Lets(x)=x2+5remainder=px+q
x2+5x4+2x3+8x2+12x+18x2+2x+3x4+5x22x3+3x2+12x+182x3+10x3x2+2x+183x2+152x+3=Remainder
Step2: Compare the remainder:
px+q=2x+3∴p=2(oncomparingwithpx+q)q=3
Final answer: Hence, the value of p=2andq=3.