If the polynomials 2x2+ax2+3x−5 and x2+x2+−4x+a leave the same remainder when divided by (x−2). Find the value of a
x−2)2x3+ax2+3x−5(2x2+(a+4)x+2a+1)
2x3−4x2
+−–––––––––
(a+4)x2+3x
(a+4)x2−2(a+4)x
+−–––––––––––––––––––
(2a+11)x−5
(2a+11)x−4a−22
+−–––––––––––––––––––
4a+17
x−2)x3+x2−4x+a(x2+3x+2
x3−2x2
+−–––––––––
3x2−4x
3x2−6x
+−–––––––––
2x+a
2x−4
+−–––––––––
4+a
Now remainder are equal
So 4a+17=4+a
⇒3a=−13
⇒a=−13/3