The correct option is A −1
Here, p(z)=a(z)3+4(z)2+3z−4, q(z)=(z)3−4z+a, and the zero of z−3 is 3.
So, by the given condition
p(3)=q(3)
a(3)3+4(3)2+3(3)−4=(3)3−4(3)+a
27a+4×9+9−4=27−12+a
27a+36+9−4=27−12+a
27a+45−4=15+a
27a+41=15+a
27a−a=15−41
26a=−26
a=−2626
a=−1