wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the position vectors of the vertices A, B and C of a ΔABC are respectively 4^i+7^j+8^k, 2^i+3^j+4^k and 2^i+5^j+7^k, then the position vector of the point, where the bisector of A meets BC is?

Open in App
Solution

step 1; if the bisector of A meets BC at D,then D divides BC in the ratio AB:AC,
Now,
AB=|BA|=¯¯b=(2i+3j+4k)(4i+7j+8k)=2i+3j4k4i7j8k¯¯b=(2i4j4k)¯b=4+16+16=36=6¯b=6AC=|CA|=¯¯c=(2i+5j+7k)(4i+7j+8k)¯¯c=2i2jk|¯c|=AC=4+4+1=9=3|¯c|=3
then,
the Position vector of D by sector formula,
¯¯¯¯¯¯¯¯¯AD=k(¯b¯b+¯c¯c)whereas,k=¯bׯc¯¯¯¯¯¯¯¯b+¯c=6×36+3=189=2=2(2i4j4k6+2i2jk3)=2(2i4j4k4i4j2k6)=2(6i8j6k6)=23(3i4j3k)
BC=(cb)=(2i+5j+7k)(2i+3j+4k)BC=0+2j+3kthenh40=k72=z83=2(14+24)13=2(38)13so,h=4,k=4(38)13+7=6113z=6(38)13+8=12413



1153200_1069762_ans_e2364bde7b0e41a486981c460ad8cef1.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Concepts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon