If the position vectors of the vertices A,B and C of a △ABC are respectively 4^i+7^j+8^k,2^i+3^j+4^k and 2^i+5^j+7^k, then the position vector of the point, where the bisector of ∠A meets BC is :
A
12(4^i+8^j+11^k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
13(6^i+11^j+15^k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
14(8^i+14^j+19^k)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
13(6^i+13^j+18^k)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D13(6^i+13^j+18^k) AB=√(4−2)2+(7−3)2+(8−4)2=6 AC=√(4−2)2+(7−5)2+(8−7)2=3 ∴AB:AC=2:1=BD:DC So, x=2⋅2+1⋅12+1=2 y=2⋅5+1⋅32+1=133 z=2⋅7+1⋅42+1=6 ⇒D(x,y,z)≡D(2,133,6) Hence, position vector of D=13(6^i+13^j+18^k)