The correct option is
B 13(6^i+13^j+18^k)
Let angular bisector of A meets side BC at point P(x, y, z)
By angular bisector theorem we can say that AB:AC=BP:PC
∴BP:PC=c:b
⇒BP:PC=6:3=2:1=m:n
⇒P(x,y,z)=(mx2+nx1m+n,my2+ny1m+n,mz2+nz1m+n)
Here B=(2,3,4)=(x2,y2,z2)
and C=(2,5,7)=(x3,y3,z3)
Subtituting values, we get;
P(x,y,z)=((2)(2)+(1)(2)2+1,(2)(5)+(1)(3)2+1,(2)(7)+(1)(4)2+1)
P(x,y,z)=(63,133,183)
∴ Position vector of point P=13(6i+13j+18k)
Hence, the correct option is 'B'.