We have,
Let the vertices of triangle is
−−→OA=(6→i+4→j+5→k)
−−→OB=(4→i+5→j+6→k)
−−→OC=(5→i+6→j+4→k)
Now,
−−→AB=−−→OB−−−→OA
−−→AB=(4→i+5→j+6→k)−(6→i+4→j+5→k)
−−→AB=4→i+5→j+6→k−6→i−4→j−5→k
−−→AB=−2→i+→j+→k
−−→BC=−−→OC−−−→OB
−−→BC=(5→i+6→j+4→k)−(4→i+5→j+6→k)
−−→BC=5→i+6→j+4→k−4→i−5→j−6→k
−−→BC=→i+→j−2→k
−−→CA=−−→OA−−−→OC
−−→CA=(6→i+4→j+5→k)−(5→i+6→j+4→k)
−−→CA=6→i+4→j+5→k−5→i−6→j−4→k
−−→CA=→i−2→j+→k
Now,
|AB|=√(−2)2+12+12=√6
|BC|=√12+12+(−2)2=√6
|CA|=√12+(−2)2+12=√6
Then,
AB=BC=CA=√6
Hence, It triangle is equilateral triangle.