If the product of matrices A=[cos2θcosθsinθcosθsinθsin2θ],B=[cos2ϕcosϕsinϕcosϕsinϕsin2ϕ] is a null matrix, then θ−ϕ is equal to
A
2nπ,n∈Z
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
nπ2,n∈Z
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(2n+1)π2,n∈Z
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
nπ,n∈Z
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C(2n+1)π2,n∈Z AB=[cos2θcosθsinθcosθsinθsin2θ][cos2ϕcosϕsinϕcosϕsinϕsin2ϕ]=[cos2θcos2ϕ+cosθsinθcosϕsinϕcos2θcosϕsinϕ+sin2ϕsinθcosθcosθsinθcos2ϕ+sin2θsinϕcosϕcosθsinθsinϕcosϕ+sin2ϕsin2θ]=[cos(θ−ϕ)cosθcosϕcosθsinϕcos(θ−ϕ)cos(θ−ϕ)sinθcosϕsinθsinϕcos(θ−ϕ)]=cos(θ−ϕ)[cosθcosϕcosθsinϕsinθcosϕsinθsinϕ] Now, AB=O
As [cosθcosϕcosθsinϕsinθcosϕsinθsinϕ]≠O for any values of (θ,ϕ) ∴cos(θ−ϕ)=0⇒θ−ϕ=(2n+1)π2,n∈Z