If the product of three numbers in GP is 216 and the sum of their products in pairs is 156, find the numbers.
Let the required numbers be ar, a and ar. Then,
ar×a×ar=216⇒a3=216=63⇒a=6
And, ar×a+a×ar+ar×ar=156
⇒ a2(1r+r+1)=156⇒(62)(1+r+r2)=156r [∵ a=6]
⇒ 36(r2+r+1)=156r⇒ 3(r2+r+1)=13r
⇒ 3r2−10r+3=0⇒(3r−1)(r−3)=0⇒r=13 or r=3
So, the required numbers are 18, 6, 2 or 2, 6, 18.