The correct option is B π2
Projection of →a on →b =→a.→b|→b|, and projection of →b on →a =→a.→b|→a|
∴→a.→b|→b|=→a.→b|→a|
∴|→b|=|→a|.
Now, angle between →a+→b and →a−→b be θ.
Then cosθ=(→a+→b).(→a−→b)|→a+→b||→a−→b|
or, cosθ=|→a|2−|→b|2|→a+→b||→a−→b|
or, cosθ=0 [Since, |→b|=|→a|]
or, θ=π2