If the quadratic equation (1+m2)x2+2mcx+c2−a2=0 has equal roots, prove that c2=a2(1+m2).
(1+m2)x2+2mcx+c2−a2=0 has equal roots
⇒b2−4ac = 0
⇒(2mc)2−4(1+m2)(c2−a2) = 0
⇒4m2c2−4(c2−a2+m2c2−m2a2) = 0
⇒ 4m2c2−4c2+4a2−4m2c2+4m2a2 = 0
⇒ 4m2a2−4c2+4a2 = 0
⇒ m2a2−c2+a2 = 0
⇒ a2(1+m2)−c2 = 0
⇒c2 = a2(1+m2)
hence proved.