The correct option is C −6√3<b<6√3
The given quadratic equation is 12x2−2bx+9=0.
Comparing this equation with the general quadratic equation,Ax2+Bx+C=0 we get,
A=12,B=−2b,C=9
∴D=B2−4AC
=(−2b)2−4×12×9
=4b2−432
For no real roots, D<0
⇒4b2−432<0
⇒4b2<4×4×3×32
⇒b2<(6√3)2
⇒−6√3<b<6√3
Hence, the correct answer is option (3).