If the quadratic equation ax2+bx+a2+b2+c2−ab−bc−ca=0, where a,b,c are distinct real numbers, has imaginary roots, then
A
2(a−b)+(a−b)2+(b−c)2+(c−a)2>0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2(a−b)+(a−b)2+(b−c)2+(c−a)2<0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2(a−b)+(a−b)2+(b−c)2+(c−a)2=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
none of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A2(a−b)+(a−b)2+(b−c)2+(c−a)2>0 ax2+bx+a2+b2+c2−ab−bc−ca=0 ⇒2ax2+2bx+(a−b)2+(b−c)2+(c−a)2=0 Let f(x)=2ax2+2bx+(a−b)2+(b−c)2+(c−a)2 f(0)=(a−b)2+(b−c)2+(c−a)2>0 and Δ<0 (Since, it is given that the roots are imaginary) ∴f(x)>0 ,∀x∈R ∴f(−1)>0 2a−2b+(a−b)2+(b−c)2+(c−a)2>0 ⇒2(a−b)+(a−b)2+(b−c)2+(c−a)2>0