Since, −5 and 1 are the roots of the equation.
x2+[a2−5a+b+4]x+b=0
∴−5+1=−[a2−5a+b+4] and −5×1=b
⇒[a2−5a+b+4]=4 and b = -5
⇒[a2−5a−5+4]=4
⇒[a2−5a−1]=4⇒4≤a2−5a−1<5
⇒a2−5a−1≥4 and a2−5a−1<5
⇒a2−5a−5≥0 and a2−5a−6<0
⇒a≤5−3√52 or a≥5+3√52 and −1<a<6
∴a∈(−1,5−3√52]∪[5+3√52,6)
∴[a]max=5