If the radii of the circular ends of a bucket 28 cm high, are 28 cm and 7 cm, find its capacity and total surface area.
We have,
Height, h = 28 cm,
Radius of the upper end, R = 28 cm and
Radius of the lower end, r = 7 cm
Also,
The slant height, l = √(R−r)2+h2
= √(28−7)2+282
= √212+282
= √441+784
= √1225
= 35 cm
Now,
Capacity of the bucket = 13πh(R2+r2+Rr)
= 13×227×28×(282+72+28×7
= 883×(784+49+196)
= 883×1029
= 30184 cm3
Also,
Total surface area of the bucket = πl(R+r)+πr2
= 227×35×(28+7)+227×7×7
= 110 x (35) + 154
= 4004 cm2