If the range for y=(cot−1x)(cot−1(−x)) is 0<y≤πab. Find the value of a+b
A
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is C6 Given, y=(cot−1x)(cot−1(−x)) =cot−1(x)(π−cot−1(x)) Now cot−1(x) and (π−cot−1(x))>0 Using A.M.≥G.M., we get cot−1x+(π−cot−1(x))2≥√(cot−1x)(π−cot−1(x)) ⇒0<√cot−1(x)(π−cot−1(x))≤cot−1x+(π−cot−1(x))2=π2 ⇒0<y≤π24