If the range of the parameter t in the interval (0,2π), satisfying −2x2+5x−10(sint)x2+2(1+sint)x+(9sint+4)>0 for all real values of x is (a,b), and (a+b)=kπ, then the value of k is
Open in App
Solution
−2x2+5x−10<0,∀x∈R Let sint=a
ax2+2(1+a)x+(9a+4)<0,∀x∈R It is only possible if a<0 and 4(1+a)2−4a(9a+4)<0⇒8a2+2a−1>0⇒(4a−1)(2a+1)>0a>14,which is not possible⇒a<−12⇒sint<−12⇒t∈(7π6,11π6)⇒a+b=3π⇒k=3