x2+2x+4x2−√6x−36<0
⇒x2−√6x−36<0
⇒(x+2√6)(x−3√6)<0
⇒−2√6<x<3√6
Now, f(x)=1−a2x+2x3
f′(x)=−a2+6x2
f′′(x)=12x
f′(x)=0 gives x=±a√6
When a>0, f′′(a/√6)>0
⇒x=a/√6 is a point of minima.
So, 0<a/√6<3√6
⇒0<a<18
When a<0, f′′(−a/√6)>0
⇒x=−a/√6 is a point of minima.
So, 0<−a/√6<3√6
⇒−18<a<0
Hence, a∈(−18,18)−{0}
So, the value of b=18