The correct option is
B G.P.Let the ratio of the roots be
k.Then, the roots of a1x2+b1x+c1=0 are α,kα
and the roots of a2x2+b2x+c2=0 are β,kβ.
∴α+kα=−b1a1 ...(1)
α.kα=c1a1 ...(2)
β+kβ=−b2a2 ...(3)
β.kβ=c2a2. ...(4)
Dividing (1) by (3), we get
α(1+k)β(1+k)=b1a2a1b2, or αβ=b1a2a1b2 ...(5)
Dividing (2) by (4), we get
kα2kβ2=c1a1a1c2; or (αβ)2=c1a2a1c2
⇒(b1a2a1b2)2=c1a2a1c2 (Using (5))
⇒(b1b2)2=c2a2a1c2×a21a22=c1a1c2a2=a1a2.c1c2
∴a1a2,b1b2,c1c2 are in G.P.