The correct option is B 0
Let α,β be the roots of equation x2+px+q=0 and let γ,δ be the roots of equation x2+bx+c=0
Then, α+β=−p,αβ=q
and γ+δ=−b,γδ=c
Given, αβ=γδ
Applying componendo-dividendo
α+βα−β=γ+δγ−δ
⇒(α+β)2(α−β)2=(γ+δ)2(γ−δ)2
⇒p2α2+β2−2αβ=b2γ2+δ2−2γδ
⇒p2(α+β)2−4αβ=b2(γ+δ)2−4γδ
⇒p2p2−4q=b2b2−4c
⇒p2c−b2q=0`
Hence, option 'A' is correct.