The correct option is C 57155
Given : SnS′n=2n−15n+10
⇒n2[2a+(n−1)d]n2[2a′+(n−1)d′]=2n−15n+10
⇒a+(n−1)2da′+(n−1)2d′=2n−15n+10 ...(1)
We know that
TnT′n=a+(n−1)da′+(n−1)d′
So, replace n→2n−1, in (1) we get
TnT′n=2(2n−1)−15(2n−1)+10⇒TnT′n=4n−310n+5
Putting n=15, we get
T15T′15=57155
Alternate solution :
Given : SnS′n=2n−15n+10
⇒SnS′n=2n2−n5n2+10n
So,
Sn=(2n2−n)k, S′n=(5n2+10n)k⇒TnT′n=Sn−Sn−1S′n−S′n−1⇒TnT′n=[2{n2−(n−1)2}−{n−(n−1)}]k[5{n2−(n−1)2}+10{n−(n−1)}]k⇒TnT′n=2(2n−1)−15(2n−1)+10⇒TnT′n=4n−310n+5
Putting n=15, we get
T15T′15=57155