The correct option is C pq
Given : SpSq=p2+pq2+q
⇒Spp2+p=Sqq2+q=k⇒Sp=(p2+p)k, Sq=(q2+q)k
Now,
TpTq=Sp−Sp−1Sq−Sq−1⇒TpTq=k(p2+p)−k[(p−1)2+(p−1)]k(q2+q)−k[(q−1)2+(q−1)]∴TpTq=pq
Alternate Solution:
Given : SpSq=p2+pq2+q
⇒p2[2a+(p−1)d]q2[2a+(q−1)d]=p2+pq2+q
⇒a+(p−1)2da+(q−1)2d=p+1q+1 ...(1)
We know that
TpTq=a+(p−1)da+(q−1)d
So, replace p→2p−1 and q→2q−1, in (1) we get
TpTq=2p−1+12q−1+1∴TpTq=pq