The correct option is D rb2=cq2
Given, ratio of roots of x2+bx+c=0 and x2+qx+r=0 is same.
Let α1β1 be roots of x2+bx+c=0
and α2β2 be roots of x2+qx+r=0
Given, α1β1=α2β2
⇒α1+β1α1−β1=α2+β2α2−β2
⇒α1+β1=−ba=−b ....(Since ⇒a=1 in this case)
⇒α1β1=c
⇒α1−β1=√b2−4c ....(Since a=1)
⇒−b√b2−4c=−q√q2−4r
Squaring on both sides, we get
⇒b2(q2−4r)=q2(b2−4c)
⇒−4b2r=−4cq2
⇒rb2=cq2