Given pq is a root.
⇒ an(pq)n+an−1(pq)n−1+...+a1(pq)+a0=0
⇒ anpn+an−1qpn−1+...+a1qn−1p+a0qn=0 (i)
⇒ an−1pn−1+an−2pn−2q+...+a1qn−2p+a0qn−1=−anpnq (ii)
⇒ Here, a0, a1, ..., an−2, an−1, p,q∈Integers.
⇒ LHS is an integer, so RHS is also an integer.
ie, −anpnq is an integer, where p and q are relatively prime to each other.
Thus, q must divide an.
Again, anpn+an−1pn−1q+...+a1qn−1p=a0qn
⇒ anpn−1+an−1qpn−2+...+a1qn−1=a0qnp (iii)
As from above; a0qnp∈Integer
⇒p is divisor of a0 (as p and q are relatively prime)
thus if the rational number pq is root of
anxn+an−1xn−1+...+a1x+a0=0,
then p divides a0 and q divides an.