Given : Re(¯¯¯z+2¯¯¯z−1)=4
Let z=x+iy
⇒ ¯¯¯z=x−iy
Now,
¯¯¯z+2¯¯¯z−1=x−iy+2x−iy−1
¯¯¯z+2¯¯¯z−1=(x+2)−iy(x−1)−iy
¯¯¯z+2¯¯¯z−1=(x+2)−iy(x−1)−iy×(x−1)+iy(x−1)+iy
¯¯¯z+2¯¯¯z−1=(x+2)(x−1)+iy[(x+2)−(x−1)]+y2(x−1)2−(iy)2
{∵ i2=−1}
¯¯¯z+2¯¯¯z−1=(x+2)(x−1)+y2+i(3y)(x−1)2+y2
Now,
Re(¯¯¯z+2¯¯¯z−1)=4
⇒(x+2)(x−1)+y2(x−1)2+y2=4
⇒x2+x−2+y2=4(x2+1−2x)+4y2
⇒x2+x−2+y2=4x2−8x+4+4y2
⇒3x2−9x+6+3y2=0
∴x2+y2−3x+2=0
Which is an equation of a circle.
Hence, Re(z+2¯¯¯z−1)=4 represents a circle.