The correct option is A
12tan2x−12ln(1+tan2x∣∣+C
We know the reduction formulae for In=∫tannx dx as:
In=1n−1tann−1x−In−2
Now, to find ∫tan3x dx
we assume n=3.
Then, we can write the reduction formulae as:
I3=13−1tan3−1x−I3−2
⇒I3=12tan2x−∫tanx dx
Now, we know
∫tan x dx = ln(secx|+C⇒∫tanx dx=ln(√1+tan2x∣∣+C⇒I1=12ln(1+tan2x∣∣+C
Thus, substituting for I1 we get,
∫tan3x dx=12tan2x −12ln(1+tan2x∣∣+C
Thus, The option a. is correct.