If the reflection of the parabola y2=4(x−1) in the line x + y = 2 is the curve Ax+By=x2, then the value of (A+B) is
0
Let a variable point on the parabola be (1+t2,2t) and its reflection in the given line be (h, k)
∴h−(1+t)2=k−2t=−2(1+t2+2t−2)2∴h−(1+t)2=−1−t2−2t+2⇒=2(1−t)k=−(t2−1)∴kh=−(t−1)(t+1)2(1−t)⇒(t+1)=2kh⇒t=2kh−1and 1−t=2−2kh=h2∴2h−2k=h22⇒4x−4y=x2∴A+B=0